The Borsuk-Tietze Linear Extension with a Side Condition

ROBERT SINE*

State University of New York at Albany, 1400 Washington Avenue, Albany, New York 12203

Communicated by John R. Rice

If D is a closed subset of a compact metric space X and f a continuous function on D then there exists a continuous function F on X with F = f on D. This of course is just a special case of the Tietze extension theorem. If D is a retract of X then there is a linear extension operator T on C(D) to C(X) with $T1 \ge 1$, $Tf \ge 0$ whenever $f \ge 0$ and Tf = f on D. It is interesting to consider the case of D the unit circumference of the unit disk X so that no retract exists. A linear extension operator T can still be defined by setting Ff(x) = $(f, \mu(x))$, where $\mu(x)$ is the Poisson representing measure for the point x in X\D. For x in D we interpret $\mu(x)$ to be $\xi(x)$, the unit point mass at x. The existence of a linear extension operator which acts on the bounded continuous functions under hypothesis that X be separable metric is the content of a theorem of Borsuk [1]. (This result has been generalized by Dugundii who removed the separability hypothesis in [2].) Returning to the example of the disk once more the Poisson representing measures $(\mu(x) \text{ for } x \notin D)$ are all absolutely continuous with respect to Lebesgue measure on D. In this note we show that a linear extension operator can be defined for D closed in X a compact metric space so that "representing measures" are absolutely continuous with respect to any pre-assigned probability with support equal to D. Incidentally the argument gives a very geometric proof of both the Tietze Theorem and the Borsuk extension Theorem in this setting.

THEOREM. Let D be closed in the compact metric space X. Let λ be any Radon probability with closed support equal to D. Then there is a linear extension $T: C(D) \rightarrow C(X)$ with the property that for each x in X\D the Radon probability $T^*\xi(x)$ is absolutely λ -continuous.

Let K(X) denote the Radon probabilities on X and K(D), those with support in D. Then K(D) is easily seen to be a ω^* -compact convex subset of K(X).

188

* Presently at the University of Rhode Island.

All rights of reproduction in any form reserved.

LEMMA. Let A be a compact convex set in K(X). Then there is a ω^* continuous retract of K(X) onto A.

Proof. Let $\{f(k): k \in \mathbb{Z}_+\}$ be a sequence of functions dense in the boundary of the unit ball of C(X). Then Q given by

$$[Q(\mu, \sigma)]^2 = \sum 2^{-k} (f(k), \mu - \sigma)^2$$

is a metric for the ω^* -topology restricted to the bounded set K(X). Moreover the spherical neighborhoods of the Q metric are strictly convex. Then for each μ in K(X) there is a unique best approximation $\tau(\mu)$ to μ from A. (For uniqueness of best approximations holds whenever we have strict convexity and existence holds whenever we have compactness.) To show continuity of the map $\mu \to \tau(\mu)$ we assume $\mu(n) \to \mu$ and by passing to a subsequence if necessary we can assume $\tau(\mu(n))$ is convergent. If $\tau(\mu(n))$ does not converge to $\tau(\mu)$ we have $\tau(\mu(n))$ disjoint from a Q-ball B about $\tau(\mu)$. Now dist $(\mu, A \setminus B)$ is achieved by compactness; moreover by uniqueness of best approximations the value is strictly less than dist (μ, A) . But since dist $(\mu(n), \mu) \to 0$, for sufficiently large n we have $\tau(\mu)$ is a better approximation to $\mu(n)$ than $\tau(\mu(n))$. This contradiction proves the lemma.

We note that retract defined above can be restricted to point masses of X and thus defines a linear extension. Hence the Tietze theorem and the Borsuk theorem in this special case are corollaries of the lemma.

The collection of Radon probabilities which are absolutely λ -continuous does not form a compact set so we must modify the construction to satisfy the side condition. It will be convenient to have a metric bounded by 1 so we replace Q by Q/R where R = Q-dia(K(X)). For each $r \ge 1$ we set A(r) = $\{fd\lambda: 0 \leq f \leq r \pmod{\lambda}\} \cap K(X)$. Each A(r) is compact convex for if $\mu(n) = f(n) d\lambda$ then f(n) is a sequence in the norm ball of radius r in the space $L_{\infty}(\lambda)$. Thus a subnet of f(n) converges in the ω^* topology of $L_{\infty}(\lambda)$ to say f also in $L_{\infty}(\lambda)$ with $0 \leq f \leq r \pmod{\lambda}$. The ω^* convergence of f(n) as elements of $L_{\infty}(\lambda)$ implies ω^* convergence of $f(n) d\lambda$ as elements of $C(X)^*$ to fd λ . Now for any μ in K(X) let $d = Q(\mu, K(D))$ and for d > 0 let $\tau(\mu)$ be the unique point of best approximation to μ in A(r) where r = 1/d. If d = 0 we set $\tau(\mu) = \mu$. Then we need only verify the continuity of the map $\xi(x) \to \tau(\xi(x))$. To this end suppose $\mu(n) \to \mu$. Let $Q(\mu, K(D)) = d > 0$. By compactness we may assume $\tau(\mu(n))$ converges to say σ . Clearly σ is in A(r) where r = 1/d. Now if $\sigma \neq \tau(\mu)$ we can place a Q-ball about $\tau(\mu)$ which does not contain σ and argue as in the lemma. Thus $\tau(\mu)$ is the only cluster point of $\tau(\mu(n))$. Finally we verify continuity at the boundary so we now assume dist $(\mu, K(D)) = 0$. Here we only consider the case that μ is a point mass. We claim that () A(r) is dense in K(D). The closure of () A(r) is compact convex so it suffices to show each point mass $\xi(x)$ with x in D is in the closure. ROBERT SINE

Since the support of λ is *D* there is a sequence of open sets W_n with $\bigcap W_n = \{x\}$ and $\lambda(W_n) > 0$. It follows that there is a sequence of nonnegative continuous functions h(n) with $\int h(n) d\lambda = 1$ and support h(n) contained in W_n . The Radon probabilities $\lambda(n) = h(n) d\lambda$ can only cluster to a Radon probability with support $\{x\}$. Thus $\bigcup A(r)$ is dense in K(D). Now if $x(n) \to x$, a point in *D*, then there is a sequence $h(n) d\lambda \to \xi(x)$. We also have $\xi(x(n)) \to \xi(x)$. Now if the best approximations do not converge to $\xi(x)$ we obtain a contradiction from the twice used trick of putting a *Q*-ball about $\xi(x)$.

Now the desired linear extension operator is defined by

$$Tf(x) = (f, \tau(\xi(x)))$$

for x in $X \setminus D$ and Tf(x) = f(x) for x in D.

References

- 1. K. BORSUK, Über Isomorphie Funktionalraume, Bull. Internat. Acad. Polon. Sci. Ser. A, No. 113 (1933), 1–10.
- 2. J. DUGUNDJI, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.